602 research outputs found

    Recurrent boosting effects of short inactivity delays on performance: an ERPs study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies investigating off-line processes of consolidation in motor learning have demonstrated a sudden, short-lived improvement in performance after 5–30 minutes of post-training inactivity. Here, we investigated further this behavioral boost in the context of the probabilistic serial reaction time task, a paradigm of implicit sequence learning. We looked both at the electrophysiological correlates of the boost effect and whether this phenomenon occurs at the initial training session only.</p> <p>Findings</p> <p>Reaction times consistently improved after a 30-minute break within two sessions spaced four days apart, revealing the reproducibility of the boost effect. Importantly, this improvement was unrelated to the acquisition of the sequential regularities in the material. At both sessions, event-related potentials (ERPs) analyses disclosed a boost-associated increased amplitude of a first negative component, and shorter latencies for a second positive component.</p> <p>Conclusion</p> <p>Behavioral and ERP data suggest increased processing fluency after short delays, which may support transitory improvements in attentional and/or motor performance and participate in the final setting up of the neural networks involved in the acquisition of novel skills.</p

    On the statistical assessment of small sample classification

    Full text link
    Classifiers start to be used in medical application to infer diagnosis. Their results are assessed through either a binomial or a permutation test. Distributions built from classification of random data with cross-validation, did not follow the theoretical binomial distribution, showing that binomial test was not conservative enough. A permutation test is thus recommended.Peer reviewe

    Offline Persistence of Memory-Related Cerebral Activity during Active Wakefulness

    Get PDF
    Much remains to be discovered about the fate of recent memories in the human brain. Several studies have reported the reactivation of learning-related cerebral activity during post-training sleep, suggesting that sleep plays a role in the offline processing and consolidation of memory. However, little is known about how new information is maintained and processed during post-training wakefulness before sleep, while the brain is actively engaged in other cognitive activities. We show, using functional magnetic resonance imaging, that brain activity elicited during a new learning episode modulates brain responses to an unrelated cognitive task, during the waking period following the end of training. This post-training activity evolves in learning-related cerebral structures, in which functional connections with other brain regions are gradually established or reinforced. It also correlates with behavioral performance. These processes follow a different time course for hippocampus-dependent and hippocampus-independent memories. Our experimental approach allowed the characterization of the offline evolution of the cerebral correlates of recent memories, without the confounding effect of concurrent practice of the learned material. Results indicate that the human brain has already extensively processed recent memories during the first hours of post-training wakefulness, even when simultaneously coping with unrelated cognitive demands

    Exploring with [18F]UCB-H the in vivo cariations in SV2A expression through the kainic acid rat model of temporal lobe epilepsy

    Get PDF
    Purpose The main purpose of this study was to understand how the positron emission tomography (PET) measure of the synaptic vesicle 2A (SV2A) protein varies in vivo during the development of temporal lobe epilepsy (TLE) in the kainic acid rat model. Procedures Twenty Sprague Dawley male rats were administered with multiple systemic doses of saline (control group, n = 5) or kainic acid (5 mg/kg/injection, epileptic group, n = 15). Both groups were scanned at the four phases of TLE (early, latent, transition, and chronic phase) with the [F-18]UCB-H PET radiotracer and T2-structural magnetic resonance imaging. At the end of the scans (3 months post-status epilepticus), rats were monitored for 7 days with electroencephalography for the detection of spontaneous electrographic seizures. Finally, the immunofluorescence staining for SV2A expression was performed. Results Control rats presented a significant increase in [F-18]UCB-H binding at the last two scans, compared with the first ones (p < 0.001). This increase existed but was lower in epileptic animals, producing significant group differences in all the phases of the disease (p < 0.028). Furthermore, the quantification of the SV2A expression in vivo with the [F-18]UCB-H radiotracer or ex vivo with immunofluorescence led to equivalent results, with a positive correlation between both. Conclusions Even if further studies in humans are required, the ability to detect a progressive decrease in SV2A expression during the development of temporal lobe epilepsy supports the use of [F-18]UCB-H as a useful tool to differentiate, in vivo, between healthy and epileptic animals along with the development of the epileptic disease

    The Neural Substrates of Memory Suppression: A fMRI Exploration of Directed Forgetting

    Get PDF
    The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes

    Contribution of Lexico-Semantic Processes to Verbal Short-Term Memory Tasks: A Pet Activation Study

    Full text link
    peer reviewedRecent studies have demonstrated the intervention of long-term memory processes in verbal STM tasks and several cognitive models have been proposed to explain these effects. A PET study was performed in order to determine whether supplementary cerebral areas are involved when subjects have to execute short-term memory tasks for items having representations in long-term memory (in comparison to items without such representations: words vs non-words). Results indicate that verbal STM for words specifically involves the left middle temporal gyrus (BA 21) and temporo-parietal junction (BA 39). These areas can be associated with lexical and semantic processes. These results are in agreement with cognitive models that postulate the simultaneous influence of lexical and semantic long-term representations on verbal STM processes and/or a lexico-semantic buffer

    The proline-rich motif of the proDer p 3 allergen propeptide is crucial for protease-protease interaction.

    Get PDF
    The majority of proteases are synthesized in an inactive form, termed zymogen, which consists of a propeptide and a protease domain. The propeptide is commonly involved in the correct folding and specific inhibition of the enzyme. The propeptide of the house dust mite allergen Der p 3, NPILPASPNAT, contains a proline-rich motif (PRM), which is unusual for a trypsin-like protease. By truncating the propeptide or replacing one or all of the prolines in the non-glycosylated zymogen with alanine(s), we demonstrated that the full-length propeptide is not required for correct folding and thermal stability and that the PRM is important for the resistance of proDer p 3 to undesired proteolysis when the protein is expressed in Pichia pastoris. Additionally, we followed the maturation time course of proDer p 3 by coupling a quenched-flow assay to mass spectrometry analysis. This approach allowed to monitor the evolution of the different species and to determine the steady-state kinetic parameters for activation of the zymogen by the major allergen Der p 1. This experiment demonstrated that prolines 5 and 8 are crucial for proDer p 3-Der p 1 interaction and for activation of the zymogen.Peer reviewe
    corecore